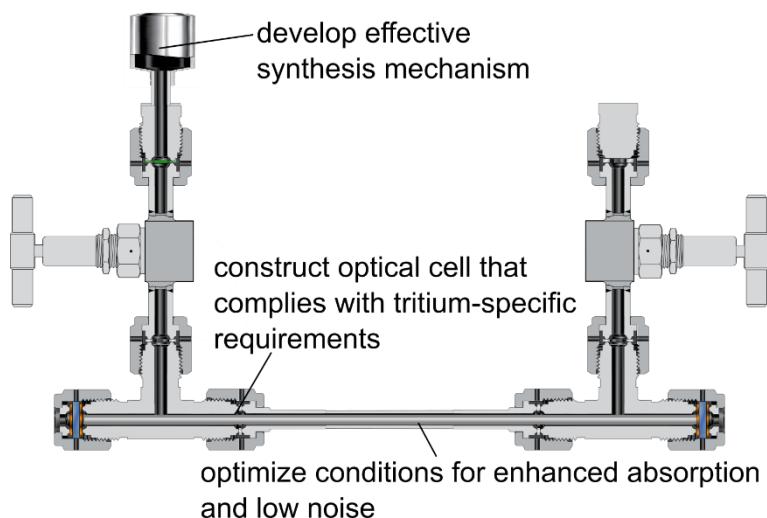
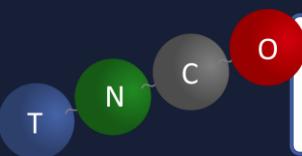


M.Th/ B.Th

Precision spectroscopy of $^3\text{HNCO}$

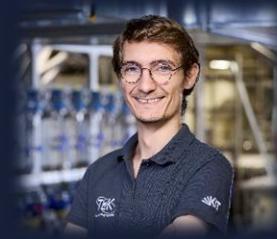

Motivation

Exchanging the hydrogen with tritium (^3H) in molecules (here HNCO) drastically influences the rotational and vibrational energy structure in the molecule. Therefore, high-resolution infrared spectra of so-called *tritiated* molecules allow for fundamental tests to quantify these isotope shift effects.


To obtain high-resolution spectra, an optical cell for Fourier transform infrared spectroscopy (FTIR) needs to be developed, synthesis must be prepared and performed and measurements performed and resulting spectra analysed!

Your task

- ❖ Develop an optical cell that complies with the requirements regarding the synthesis, optical properties, and tritium-compatibility.
- ❖ Develop an effective synthesis
- ❖ Measure spectra using FTIR-spectrometry.
- ❖ Calibrate the spectra using absorption signatures of precisely known species (e.g. CO_2 , CH_4 ,...).
- ❖ Assign, yet not measured, absorption signatures from $^3\text{HNCO}$ using a modifiable python-software.
- ❖ Analyse data and derive a quantum-mechanical model for the rotational and vibrational states of tritiated methane species.


Be co-author of an impactful publication for molecular physics!

Valentin Hermann

valentin.hermann@kit.edu

www.kit.edu